Inference of Adaptive Shifts for Multivariate Correlated Traits.

نویسندگان

  • Paul Bastide
  • Cécile Ané
  • Stéphane Robin
  • Mahendra Mariadassou
چکیده

To study the evolution of several quantitative traits, the classical phylogenetic comparative framework consists of a multivariate random process running along the branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes preferred to the simple Brownian Motion (BM) as it models stabilizing selection toward an optimum. The optimum for each trait is likely to be changing over the long periods of time spanned by large modern phylogenies. Our goal is to automatically detect the position of these shifts on a phylogenetic tree, while accounting for correlations between traits, which might exist because of structural or evolutionary constraints. We show that, in the presence of shifts, phylogenetic Principal Component Analysis (pPCA) fails to decorrelate traits efficiently, so that any method aiming at finding shifts needs to deal with correlation simultaneously. We introduce here a simplification of the full multivariate OU model, named scalar OU (scOU), which allows for noncausal correlations and is still computationally tractable. We extend the equivalence between the OU and a BM on a re-scaled tree to our multivariate framework. We describe an Expectation Maximization algorithm that allows for a maximum likelihood estimation of the shift positions, associated with a new model selection criterion, accounting for the identifiability issues for the shift localization on the tree. The method, freely available as an R-package (PhylogeneticEM) is fast, and can deal with missing values. We demonstrate its efficiency and accuracy compared to another state-of-the-art method (l1ou) on a wide range of simulated scenarios, and use this new framework to re-analyze recently gathered datasets on New World Monkeys and Anolis lizards.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...

متن کامل

Fitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure

The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2018